论文标题

Furstenberg系统的独特性

Uniqueness of a Furstenberg system

论文作者

Bergelson, Vitaly, Moragues, Andreu Ferré

论文摘要

给定一个可数的Amenable组$ g $,afølner序列$(f_n)\ subseteq g $,以及$ \ bar {d} _ {(f_n)}(e)= \ limsup_ = \ limsup_ { f_n |} {| f_n |}> 0 $,furstenberg的通信原理与一对$(e,(f_n))$一个度量保存系统$(x,x,\ nathcal {b},μ,μ,(t_g) $μ(a)= \ bar {d} _ {(f_n)}(e)$,以一种方式,以使所有$ r \ in \ mathbb {n} $以及所有$ g_1,\ dots,g_r \ in g $ in G $ in G $ in G $ in G $ in G $ in G $ g_r^{ - 1} e)\geqμ((t_ {g_1})^{ - 1} a \ cap \ dots \ cap(t_ {g_r})^{ - 1} a)$。我们表明,在某些自然假设下,系统$(x,\ mathcal {b},μ,(t_g)_ {g \ in g})$是唯一的,却是可测量的同构。我们还建立了这种唯一性结果的变体,用于非计算离散正式的半群以及广义的对应原理,该原理涉及有限的有限函数家族$ f_1,\ dots,f _ {\ ell}:g \ rightarrow \ rightArrow \ rightarrow \ mathbb {c} $。

Given a countable amenable group $G$, a Følner sequence $(F_N) \subseteq G$, and a set $E \subseteq G$ with $\bar{d}_{(F_N)}(E)=\limsup_{N \to \infty} \frac{|E \cap F_N|}{|F_N|}>0$, Furstenberg's correspondence principle associates with the pair $(E,(F_N))$ a measure preserving system $(X,\mathcal{B},μ,(T_g)_{g \in G})$ and a set $A \in \mathcal{B}$ with $μ(A)=\bar{d}_{(F_N)}(E)$, in such a way that for all $r \in \mathbb{N}$ and all $g_1,\dots,g_r \in G$ one has $\bar{d}_{(F_N)}(g_1^{-1}E \cap \dots \cap g_r^{-1}E)\geqμ((T_{g_1})^{-1}A \cap \dots \cap (T_{g_r})^{-1}A)$. We show that under some natural assumptions, the system $(X,\mathcal{B},μ,(T_g)_{g \in G})$ is unique up to a measurable isomorphism. We also establish variants of this uniqueness result for non-countable discrete amenable semigroups as well as for a generalized correspondence principle which deals with a finite family of bounded functions $f_1,\dots,f_{\ell}: G \rightarrow \mathbb{C}$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源