论文标题

使用单个摄像机的不合作空间相对导航的强大的横向上优化

Robust On-Manifold Optimization for Uncooperative Space Relative Navigation with a Single Camera

论文作者

Rondao, Duarte, Aouf, Nabil, Richardson, Mark A., Dubanchet, Vincent

论文摘要

与传统的飞行硬件或基于昂贵的激光系统相比,光相机由于其吸引人的尺寸,功率和成本属性而成为相对导航的合适传感器。但是,摄像头不能自行推断深度信息,通常通过引入互补传感器或第二台相机来解决该信息。在本文中,证明了一种基于创新的模型方法,以估计目标对象相对于Chaser航天器的六维姿势,仅使用单眼设置。观察到的目标方面被解决为分类问题,其中使用高斯混合物建模离线学习了三维形状。通过根据局部特征对应关系最大程度地减少两个不同的鲁棒损失函数来完善估计。然后,处理所得的伪测量,并与扩展的卡尔曼过滤器进行处理并融合。整个优化框架旨在直接在$ se \ text {(3)} $歧管上运行,从而将过程和测量模型与全局态度状态表示形式脱在一起。它在与复杂的航天器环境中的集合轨迹的现实合成和实验室数据集上进行了验证。它证明了它如何以其完整的翻滚运动以很高的精度来实现相对姿势的估计值。

Optical cameras are gaining popularity as the suitable sensor for relative navigation in space due to their attractive sizing, power and cost properties when compared to conventional flight hardware or costly laser-based systems. However, a camera cannot infer depth information on its own, which is often solved by introducing complementary sensors or a second camera. In this paper, an innovative model-based approach is instead demonstrated to estimate the six-dimensional pose of a target object relative to the chaser spacecraft using solely a monocular setup. The observed facet of the target is tackled as a classification problem, where the three-dimensional shape is learned offline using Gaussian mixture modeling. The estimate is refined by minimizing two different robust loss functions based on local feature correspondences. The resulting pseudo-measurements are then processed and fused with an extended Kalman filter. The entire optimization framework is designed to operate directly on the $SE\text{(3)}$ manifold, uncoupling the process and measurement models from the global attitude state representation. It is validated on realistic synthetic and laboratory datasets of a rendezvous trajectory with the complex spacecraft Envisat. It is demonstrated how it achieves an estimate of the relative pose with high accuracy over its full tumbling motion.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源