论文标题

二维材料中激子和Trions的光学电导率的多体型理论

A Many-Body Theory of the Optical Conductivity of Excitons and Trions in Two-Dimensional Materials

论文作者

Rana, Farhan, Koksal, Okan, Manolatou, Christina

论文摘要

二维(2D)材料的光谱表现出尖锐的吸收峰,通常用激子和Trions(或带电的激子)识别。在本文中,我们表明,掺杂的2D材料中的激子和Trions可以通过两个耦合的schrodinger样方程来描述 - 激子的一个两体方程,而Trions的另一个四体方程。在电子掺杂的2D材料中,用激发子的四体结合状态和激发传导带电子孔对鉴定了结合的TRION态。在掺杂的2D材料中,激子和TRIONS状态不是全汉尔顿顿全部的特征状态,其各自的Schrodinger方程是由于库仑相互作用而耦合的。这种耦合的强度随掺杂密度而增加。这两个耦合方程式的溶液可以定量解释2D材料的光吸收光谱中观察到的所有突出特征,包括观察两个突出的吸收峰以及其能量分裂的变化,光谱形状以及具有电子密度的强度。在我们的工作中获得的光导率准确满足光学电导率总和规则。激子和TRION态的叠加可用于构建两个耦合的Schrodinger方程的解决方案,并且该解决方案类似于变异的激子 - 果态状态,从而建立了我们的方法与Fermi Polaron Physics之间的关系。

The optical spectra of two dimensional (2D) materials exhibit sharp absorption peaks that are commonly identified with exciton and trions (or charged excitons). In this paper, we show that excitons and trions in doped 2D materials can be described by two coupled Schrodinger-like equations - one two-body equation for excitons and another four-body equation for trions. In electron doped 2D materials, a bound trion state is identified with a four-body bound state of an exciton and an excited conduction band electron-hole pair. In doped 2D materials, the exciton and the trions states are the not the eigenstates of the full Hamiltonian and their respective Schrodinger equations are coupled due to Coulomb interactions. The strength of this coupling increases with the doping density. Solutions of these two coupled equations can quantitatively explain all the prominent features experimentally observed in the optical absorption spectra of 2D materials including the observation of two prominent absorption peaks and the variation of their energy splittings and spectral shapes and strengths with the electron density. The optical conductivity obtained in our work satisfies the optical conductivity sum rule exactly. A superposition of exciton and trion states can be used to construct a solution of the two coupled Schrodinger equations and this solution resembles the variational exciton-polaron state, thereby establishing the relationship between our approach and Fermi polaron physics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源