论文标题

最大程度地减少具有限制解码集的擦除代码的字母大小

Minimizing the alphabet size of erasure codes with restricted decoding sets

论文作者

Gonen, Mira, Haviv, Ishay, Langberg, Michael, Sprintson, Alex

论文摘要

字母$ f $上的最大距离可分开代码是通过编码函数$ c:f^k \ rightArrow f^n $定义的,即使在删除了其符号的任何$ n-k $之后,它也可以从codeWord $ c(m)中检索消息$ m \ in f^k $。给定参数$ n $和$ k $的一般(非线性)MDS代码的最小字母大小是未知的,并且构成了编码理论中的核心开放问题之一。本文在广义设置中启动了代码的字母大小的研究,其中需要编码方案来处理所有可能的擦除模式的预先指定子集,自然而然地由$ n $ vertex $ k $ -k $均匀的超图表表示。我们将此类代码的最小字母大小与超图的强色数相关联,并分析线性和非线性设置所获得的边界的紧密度。我们进一步考虑了问题的变化,这些变化允许解码误差的可能性很小。

A Maximum Distance Separable code over an alphabet $F$ is defined via an encoding function $C:F^k \rightarrow F^n$ that allows to retrieve a message $m \in F^k$ from the codeword $C(m)$ even after erasing any $n-k$ of its symbols. The minimum possible alphabet size of general (non-linear) MDS codes for given parameters $n$ and $k$ is unknown and forms one of the central open problems in coding theory. The paper initiates the study of the alphabet size of codes in a generalized setting where the coding scheme is required to handle a pre-specified subset of all possible erasure patterns, naturally represented by an $n$-vertex $k$-uniform hypergraph. We relate the minimum possible alphabet size of such codes to the strong chromatic number of the hypergraph and analyze the tightness of the obtained bounds for both the linear and non-linear settings. We further consider variations of the problem which allow a small probability of decoding error.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源