论文标题
Eberlein分解光伏通货膨胀系统
Eberlein decomposition for PV inflation systems
论文作者
论文摘要
原始PISOT的Dirac梳子 - 实际线上的Vijayaraghavan(PV)通胀,或者更一般而言,在$ \ Mathbb {r}^d $中进行了分析。我们为这种狄拉克梳子构建了一种均要分裂,该梳子会导致经典的Eberlein分解在配对相关度量的水平上,从而在相应的衍射度量中与纯点与连续光谱成分的分离。用两个指导示例说明了这一点,并概述了具有随机性的更通用系统的扩展。
The Dirac combs of primitive Pisot--Vijayaraghavan (PV) inflations on the real line or, more generally, in $\mathbb{R}^d$ are analysed. We construct a mean-orthogonal splitting for such Dirac combs that leads to the classic Eberlein decomposition on the level of the pair correlation measures, and thus to the separation of pure point versus continuous spectral components in the corresponding diffraction measures. This is illustrated with two guiding examples, and an extension to more general systems with randomness is outlined.