论文标题

量子力学是在认知限制下进行估计的演算

Quantum mechanics is a calculus for estimation under epistemic restriction

论文作者

Budiyono, Agung

论文摘要

考虑具有认知限制的统计模型,以便与经典力学不同,允许的位置分布在根本上受到基础动量场的形式的限制。假设一个希望估算有关共轭位置的信息的代理(观察者)。我们讨论了一个经典一致,无偏见的,对动量场的最佳估计,可以根据可以得出量子力学的抽象数学规则,从而最大程度地估计平方误差。结果表明,在认知限制下,量子波函数不是现实的客观无关属性,而是代理人对动量的最佳估计。动量和位置之间的量子不确定性和互补性从同时估计动量场和平均位置的平均平方误差之间的权衡找到了他们的认知来源,而高斯波函数代表了同时的有效估计,从而实现了相关平方误差的cramér-rao界限。然后,我们认为测量中的单一时间演变和波浪函数崩溃是代理商更新其估算给定信息信息的规范规则。

Consider a statistical model with an epistemic restriction such that, unlike in classical mechanics, the allowed distribution of positions is fundamentally restricted by the form of an underlying momentum field. Assume an agent (observer) who wishes to estimate the momentum field given information on the conjugate positions. We discuss a classically consistent, weakly unbiased, best estimation of the momentum field minimizing the mean squared error, based on which the abstract mathematical rules of quantum mechanics can be derived. The results suggest that quantum wave function is not an objective agent-independent attribute of reality, but represents the agent's best estimation of the momentum, given the positions, under epistemic restriction. Quantum uncertainty and complementarity between momentum and position find their epistemic origin from the trade-off between the mean squared errors of simultaneous estimations of momentum field and mean position, with the Gaussian wave function represents the simultaneous efficient estimations, achieving the Cramér-Rao bounds of the associated mean squared errors. We then argue that unitary time evolution and wave function collapse in measurement are normative rules for an agent to update her/his estimation given information on the experimental settings.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源