论文标题
无序耦合阵列中极化顿二聚体的动力学
The dynamics of a polariton dimer in a disordered coupled array of cavities
论文作者
论文摘要
我们研究了激光强度中疾病对20个腔阵列中黑态极性子动力学的影响,每个腔体包含一个四级原子的集合,这些原子由Bose-Hubbard Hamiltonian描述。我们检查了从一个腔中的一个或两个偏振子开始的腔体中极化数的演变。对于单个极化子在激光强度中没有混乱的情况下,我们计算了极化子的波功能,并发现它随着时间的流逝而从初始空腔中分散。疾病的添加导致最少抑制波功能的分散。如果两个极性元素具有现场排斥力与跳高强度比为20,则发现极性子形成了排斥的状态或二聚体。没有障碍,二聚体波函数分散与单个极性波函数相似,但在较长的时间段内。添加足够强的障碍会导致极化二聚体的定位。发现定位长度由指数-1.31的幂定律描述。我们还发现,我们可以在任何给定时间通过打开疾病来定位二聚体。
We investigate the effect of disorder in the laser intensity on the dynamics of dark-state polaritons in an array of 20 cavities, each containing an ensemble of four-level atoms that is described by a Bose-Hubbard Hamiltonian. We examine the evolution of the polariton number in the cavities starting from a state with either one or two polaritons in one of the cavities. For the case of a single polariton without disorder in the laser intensity, we calculate the wavefunction of the polariton and find that it disperses away from the initial cavity with time. The addition of disorder results in minimal suppression of the dispersal of the wavefunction. In the case of two polaritons with an on-site repulsion to hopping strength ratio of 20, we find that the polaritons form a repulsively bound state or dimer. Without disorder the dimer wavefunction disperses similarly to the single polariton wavefunction but over a longer time period. The addition of sufficiently strong disorder results in localization of the polariton dimer. The localization length is found to be described by a power law with exponent -1.31. We also find that we can localise the dimer at any given time by switching on the disorder.