论文标题
混合GMSFEM用于异质多孔介质中的线性毛弹性问题
Mixed GMsFEM for linear poroelasticity problems in heterogeneous porous media
论文作者
论文摘要
流体和固体之间相互作用的准确数值模拟在应用中起重要作用。在实际情况下,这项任务是具有挑战性的,因为媒体通常是高度异质的,并且对比度很大。为了克服这一计算挑战,开发了各种多尺度方法。在本文中,我们考虑了高对比度异构多孔介质中的一类线性毛弹性问题,并开发了混合的广义多尺度有限元方法(GMSFEM)以获得快速计算方法。我们的目的是开发一种多尺度方法,该方法在培养基的异质性和对比度方面具有牢固性,并提供大规模保守的流体速度领域。我们将为弹性位移以及流体速度构建分离的多尺度基础函数。我们的多尺度函数是本地的。该结构基于局部快照空间和局部光谱分解的一些合适选择,目的是提取溶液的主要模式。对于压力,我们将使用分段常数近似。我们将提出几个数值示例,以说明我们方法的性能。我们的结果表明,所提出的方法能够以较小的自由提供准确的数值解决方案。
Accurate numerical simulations of interaction between fluid and solid play an important role in applications. The task is challenging in practical scenarios as the media are usually highly heterogeneous with very large contrast. To overcome this computational challenge, various multiscale methods are developed. In this paper, we consider a class of linear poroelasticity problems in high contrast heterogeneous porous media, and develop a mixed generalized multiscale finite element method (GMsFEM) to obtain a fast computational method. Our aim is to develop a multiscale method that is robust with respect to the heterogeneities and contrast of the media, and gives a mass conservative fluid velocity field. We will construct decoupled multiscale basis functions for the elastic displacement as well as fluid velocity. Our multiscale basis functions are local. The construction is based on some suitable choices of local snapshot spaces and local spectral decomposition, with the goal of extracting dominant modes of the solutions. For the pressure, we will use piecewise constant approximation. We will present several numerical examples to illustrate the performance of our method. Our results indicate that the proposed method is able to give accurate numerical solutions with a small degree of freedoms.