论文标题

关于非线性最佳控制的重叠施瓦茨分解的收敛性

On the Convergence of Overlapping Schwarz Decomposition for Nonlinear Optimal Control

论文作者

Na, Sen, Shin, Sungho, Anitescu, Mihai, Zavala, Victor M.

论文摘要

我们研究了用于解决非线性最佳控制问题(OCP)的重叠的Schwarz分解算法的收敛性。该算法将时域分解为一组重叠的子域,并求解并联子域上定义的所有子问题。通过在重叠子域的边界上更新原始二键信息来实现收敛。我们表明该算法表现出局部线性收敛,并且收敛速率随重叠大小而呈指数提高。我们还为一般二次编程建立了全局收敛结果,该结果使Schwarz方案在二阶优化算法(例如,顺序二次编程)中的应用。我们收敛分析的理论基础是非线性OCP的灵敏度结果,我们称之为“敏感性的指数衰减”(EDS)。 EDS从直觉上指出,域边界(即初始时间和终端时间)对解决方案的影响呈指数衰减,因为一个人进入域。在这里,我们通过表明EDS为非线性OCP的原始解决方案和双重解,在文献中提供了先前的分析,在统一的二阶足够条件下,可控性和界限条件下。我们通过四次运动计划问题和PDE控制问题进行实验,以验证我们的理论。并表明该方法比ADMM高得多,并且与集中式求解器IPOPT一样有效。

We study the convergence properties of an overlapping Schwarz decomposition algorithm for solving nonlinear optimal control problems (OCPs). The algorithm decomposes the time domain into a set of overlapping subdomains, and solves all subproblems defined over subdomains in parallel. The convergence is attained by updating primal-dual information at the boundaries of overlapping subdomains. We show that the algorithm exhibits local linear convergence, and that the convergence rate improves exponentially with the overlap size. We also establish global convergence results for a general quadratic programming, which enables the application of the Schwarz scheme inside second-order optimization algorithms (e.g., sequential quadratic programming). The theoretical foundation of our convergence analysis is a sensitivity result of nonlinear OCPs, which we call "exponential decay of sensitivity" (EDS). Intuitively, EDS states that the impact of perturbations at domain boundaries (i.e. initial and terminal time) on the solution decays exponentially as one moves into the domain. Here, we expand a previous analysis available in the literature by showing that EDS holds for both primal and dual solutions of nonlinear OCPs, under uniform second-order sufficient condition, controllability condition, and boundedness condition. We conduct experiments with a quadrotor motion planning problem and a PDE control problem to validate our theory; and show that the approach is significantly more efficient than ADMM and as efficient as the centralized solver Ipopt.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源