论文标题

与应用程序控制和决策的不确定性推断

Uncertainty Inference with Applications to Control and Decision

论文作者

Chen, Xinjia

论文摘要

在工程和科学的许多领域,决策规则和控制策略通常是根据相关系统参数的标称值设计的。为了确保当相关参数在一定范围内变化时,控制策略或决策规则将正常工作,至关重要的是研究如何受系统参数变化的影响。在本文中,我们证明了这种问题归结为研究不确定性功能变化的研究。在这个愿景的驱动下,我们提出了一种推断不确定性功能的一般理论。凭借这种理论,我们研究了随机向量的浓度现象。我们得出了统一的指数不平等和随机向量的多维概率不平等,与现有的矢量相比,这显着更紧。概率不平等应用于研究具有实际参数不确定性的控制系统的性能。可以获得可以获得控制系统的更有用的见解。此外,与经典的确定性最差方法相比,概率不平等以一种明显较少的保守方式提供了绩效分析。

In many areas of engineering and sciences, decision rules and control strategies are usually designed based on nominal values of relevant system parameters. To ensure that a control strategy or decision rule will work properly when the relevant parameters vary within certain range, it is crucial to investigate how the performance measure is affected by the variation of system parameters. In this paper, we demonstrate that such issue boils down to the study of the variation of functions of uncertainty. Motivated by this vision, we propose a general theory for inferring function of uncertainties. By virtue of such theory, we investigate concentration phenomenon of random vectors. We derive uniform exponential inequalities and multidimensional probabilistic inequalities for random vectors, which are substantially tighter as compared to existing ones. The probabilistic inequalities are applied to investigate the performance of control systems with real parametric uncertainty. It is demonstrated much more useful insights of control systems can be obtained. Moreover, the probabilistic inequalities offer performance analysis in a significantly less conservative way as compared to the classical deterministic worst-case method.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源