论文标题

n-复杂套装的基本下降

Fundamental pushouts of n-complicial sets

论文作者

Ozornova, Viktoriya, Rovelli, Martina

论文摘要

本文着重研究如何在$(\ infty,n)$类别的特定实现中保存严格的$ n $类别之间的某些关系,该类别由饱和的$ n $ complicial集合给出。在此模型中,我们表明$(\ infty,n)$ - $ n $ - 类别的分类神经在同型上与$ 1 $ - 类别悬架和楔形物兼容。作为一个应用程序,我们表明在$ n $ - 类别中编码构图的某些定位是饱和$ n $ complicial套件的同型下降。

The paper focuses on investigating how certain relations between strict $n$-categories are preserved in a particular implementation of $(\infty,n)$-categories, given by saturated $n$-complicial sets. In this model, we show that the $(\infty,n)$-categorical nerve of $n$-categories is homotopically compatible with $1$-categorical suspension and wedge. As an application, we show that certain pushouts encoding composition in $n$-categories are homotopy pushouts of saturated $n$-complicial sets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源