论文标题
Verinotopicnet:使用具有全球环境的本地描述符的迭代注意机制
RetinotopicNet: An Iterative Attention Mechanism Using Local Descriptors with Global Context
论文作者
论文摘要
近年来,卷积神经网络(CNN)是计算机视觉研究中许多进步的推动力。这一进展产生了许多实际应用,我们看到,今天有效地将CNN转移到嵌入式系统的需求增加。但是,传统的CNN缺乏规模和旋转不变性的特性:自然图像中最常见的两个转换。结果,CNN必须在不同尺度上学习相同对象的不同功能。这种冗余是CNN需要非常深的主要原因,以实现所需的准确性。在本文中,我们通过再现自然如何解决人脑中的问题来开发有效的解决方案。为此,我们让我们的CNN在使用对数极极变换提取的小斑块上运行,该贴片已知是尺度和旋转等效的。以这种方式提取的斑块具有放大中央场并压缩外围的良好特性。因此,我们获得了具有全球上下文信息的本地描述符。但是,单个贴片的处理通常不足以实现高精度,例如分类任务。因此,我们连续跳到几个不同的位置,称为扫视,从而建立了对整个图像的理解。由于对数极态贴片包含全局上下文信息,因此我们只能使用小斑块有效地计算出扫视后。扫视有效地弥补了对数偏置变换缺乏翻译均衡的。
Convolutional Neural Networks (CNNs) were the driving force behind many advancements in Computer Vision research in recent years. This progress has spawned many practical applications and we see an increased need to efficiently move CNNs to embedded systems today. However traditional CNNs lack the property of scale and rotation invariance: two of the most frequently encountered transformations in natural images. As a consequence CNNs have to learn different features for same objects at different scales. This redundancy is the main reason why CNNs need to be very deep in order to achieve the desired accuracy. In this paper we develop an efficient solution by reproducing how nature has solved the problem in the human brain. To this end we let our CNN operate on small patches extracted using the log-polar transform, which is known to be scale and rotation equivariant. Patches extracted in this way have the nice property of magnifying the central field and compressing the periphery. Hence we obtain local descriptors with global context information. However the processing of a single patch is usually not sufficient to achieve high accuracies in e.g. classification tasks. We therefore successively jump to several different locations, called saccades, thus building an understanding of the whole image. Since log-polar patches contain global context information, we can efficiently calculate following saccades using only the small patches. Saccades efficiently compensate for the lack of translation equivariance of the log-polar transform.