论文标题
按平均能量定义井井有条的浮子基础
Defining a well-ordered Floquet basis by the average energy
论文作者
论文摘要
目前,计算定期驱动的量子系统状态的最有效方法是使用浮雕理论和浮雕eigenbasis。此基集方法的广泛应用受到以下限制:缺乏对浮标本征函数的独特顺序,其定义在共鸣时的歧义以及对共鸣时无限扰动的不稳定性。我们通过使用对平均能量的修订定义作为量子数来重新定义本本basis来解决这些问题。由于这种重新定义,我们还获得了floquet-ritz变化原理,并证明希尔伯特空间的截断是合理的。
At the moment, the most efficient method to compute the state of a periodically driven quantum system is using Floquet theory and the Floquet eigenbasis. The wide application of this basis set method is limited by: a lack of unique ordering of the Floquet eigenfunctions, an ambiguity in their definition at resonance, and an instability against infinitesimal perturbation at resonance. We address these problems by redefining the eigenbasis using a revised definition of the average energy as a quantum number. As a result of this redefinition, we also obtain a Floquet-Ritz variational principle, and justify the truncation of the Hilbert space.