论文标题

假代理商对信息级联的影响

Impact of Fake Agents on Information Cascades

论文作者

Poojary, Pawan, Berry, Randall

论文摘要

在在线市场中,代理商除了私人信息外,还经常从他人的行动中学习。这种观察性学习可能会导致放牧或信息级联,其中代理商最终忽略了他们的私人信息并“跟随人群”。对于贝叶斯理性的代理商,对这种级联反应的模型进行了很好的研究,这些代理商依次到达并选择回报最佳动作。本文还考虑了采取固定行动的假代理商的存在,以影响随后的理性代理人对其首选的行动。我们表征了这种假代理的比例如何影响固定的私人信息质量的理性代理行为。我们的模型产生了一个马尔可夫链,具有无数状态空间,为此,我们提供了一种迭代方法来计算代理商的放牧机会及其福利的机会(预期的回报)。我们的主要结果显示了一种违反直觉现象:存在无限的许多情况,即假代理的比例增加实际上减少了其首选结果的机会。此外,这种增加会导致每个理性药物的福利有了显着改善。因此,这种增加不仅对假代理人适得其反,而且对理性代理人也有益。

In online markets, agents often learn from other's actions in addition to their private information. Such observational learning can lead to herding or information cascades in which agents eventually ignore their private information and "follow the crowd". Models for such cascades have been well studied for Bayes-rational agents that arrive sequentially and choose pay-off optimal actions. This paper additionally considers the presence of fake agents that take a fixed action in order to influence subsequent rational agents towards their preferred action. We characterize how the fraction of such fake agents impacts the behavior of rational agents given a fixed quality of private information. Our model results in a Markov chain with a countably infinite state space, for which we give an iterative method to compute an agent's chances of herding and its welfare (expected pay-off). Our main result shows a counter-intuitive phenomenon: there exist infinitely many scenarios where an increase in the fraction of fake agents in fact reduces the chances of their preferred outcome. Moreover, this increase causes a significant improvement in the welfare of every rational agent. Hence, this increase is not only counter-productive for the fake agents but is also beneficial to the rational agents.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源