论文标题

基于云的联邦提升用于移动人群

Cloud-based Federated Boosting for Mobile Crowdsensing

论文作者

Wang, Zhuzhu, Yang, Yilong, Liu, Yang, Liu, Ximeng, Gupta, Brij B., Ma, Jianfeng

论文摘要

联合的极端梯度提高到移动人群的应用程序的应用带来了一些好处,尤其是在效率和分类方面的高性能。但是,这也为数据和模型隐私保护带来了新的挑战。除了它容易受到基于生成的对抗网络(GAN)的用户数据重建攻击的攻击之外,没有现有的体系结构考虑如何保护模型隐私。在本文中,我们提出了一个基于秘密共享的联合学习体系结构FEDXGB,以实现保护移动人群的极端梯度的增强。具体来说,我们首先使用秘密共享建立XGBoost的安全分类和回归树(CART)。然后,我们提出了一个安全的预测协议,以保护移动人群中XGBoost的模型隐私。我们进行了全面的理论分析和广泛的实验,以评估FEDXGB的安全性,有效性和效率。结果表明,与原始的XGBoost模型相比,FEDXGB对诚实但有趣的对手有安全的精度损失不到1%。

The application of federated extreme gradient boosting to mobile crowdsensing apps brings several benefits, in particular high performance on efficiency and classification. However, it also brings a new challenge for data and model privacy protection. Besides it being vulnerable to Generative Adversarial Network (GAN) based user data reconstruction attack, there is not the existing architecture that considers how to preserve model privacy. In this paper, we propose a secret sharing based federated learning architecture FedXGB to achieve the privacy-preserving extreme gradient boosting for mobile crowdsensing. Specifically, we first build a secure classification and regression tree (CART) of XGBoost using secret sharing. Then, we propose a secure prediction protocol to protect the model privacy of XGBoost in mobile crowdsensing. We conduct a comprehensive theoretical analysis and extensive experiments to evaluate the security, effectiveness, and efficiency of FedXGB. The results indicate that FedXGB is secure against the honest-but-curious adversaries and attains less than 1% accuracy loss compared with the original XGBoost model.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源