论文标题
宏观经济时间序列中的分数趋势和周期
Fractional trends and cycles in macroeconomic time series
论文作者
论文摘要
我们开发了相关的趋势周期分解的概括,该分解通过将永久分量作为部分集成过程进行建模,并将分数滞后运算符纳入循环分量的自动性多项式,从而避免了对长期动态特征的先前假设。该模型允许与其他模型参数共同对集成顺序进行内源性估计,因此,无需先前的规范测试。我们将模型与贝弗里奇 - 纳尔逊分解相关联,并为分数组件提供了修改的卡尔曼滤波器估计器。显示了最大似然估计量的识别,一致性和渐近正态性。对于我们的宏观经济数据,我们证明,与$ i(1)$相关的未观察到的组件模型不同,新模型估计了平稳的趋势,并且循环达到了所有NBER衰退。每当数据生成机制的集成顺序大于一个时,$ i(1)$未观察到的组件模型每当集成顺序大于一个时,就会产生向上偏向的信号噪声比率,而由于分数趋势规范和较高的循环范围,由于较高的循环范围,由于较高的趋势频率cly的趋势,因此,分数集成的模型将变化的变化较小,导致了较高的变化。宏观经济常识。
We develop a generalization of correlated trend-cycle decompositions that avoids prior assumptions about the long-run dynamic characteristics by modelling the permanent component as a fractionally integrated process and incorporating a fractional lag operator into the autoregressive polynomial of the cyclical component. The model allows for an endogenous estimation of the integration order jointly with the other model parameters and, therefore, no prior specification tests with respect to persistence are required. We relate the model to the Beveridge-Nelson decomposition and derive a modified Kalman filter estimator for the fractional components. Identification, consistency, and asymptotic normality of the maximum likelihood estimator are shown. For US macroeconomic data we demonstrate that, unlike $I(1)$ correlated unobserved components models, the new model estimates a smooth trend together with a cycle hitting all NBER recessions. While $I(1)$ unobserved components models yield an upward-biased signal-to-noise ratio whenever the integration order of the data-generating mechanism is greater than one, the fractionally integrated model attributes less variation to the long-run shocks due to the fractional trend specification and a higher variation to the cycle shocks due to the fractional lag operator, leading to more persistent cycles and smooth trend estimates that reflect macroeconomic common sense.