论文标题

预测一所大型入学的美国大学毕业时间

Predicting time to graduation at a large enrollment American university

论文作者

Aiken, John M., De Bin, Riccardo, Hjorth-Jensen, Morten, Caballero, Marcos D.

论文摘要

在大学学位毕业所花费的时间被各种因素,例如他们的背景,大学的学业表现以及他们融入他们参加的大学社会社区的各种因素。不同的大学有不同的人口,学生服务,教学方式和学位课程,但是,它们都收集机构数据。这项研究介绍了160,933名参加美国大型研究大学的学生的数据。数据包括性能,注册,人口统计和准备功能。在Tinto的辍学理论的背景下,出现了离散时间危险模型。此外,一种新型的机器学习方法:应用梯度增强的树木,并将其与典型的最大似然方法进行比较。我们证明,入学因素(例如更改主要)会导致学生毕业生的模型预测性能的提高,而不是表现因素(例如成绩)或制备(例如高中GPA)。

The time it takes a student to graduate with a university degree is mitigated by a variety of factors such as their background, the academic performance at university, and their integration into the social communities of the university they attend. Different universities have different populations, student services, instruction styles, and degree programs, however, they all collect institutional data. This study presents data for 160,933 students attending a large American research university. The data includes performance, enrollment, demographics, and preparation features. Discrete time hazard models for the time-to-graduation are presented in the context of Tinto's Theory of Drop Out. Additionally, a novel machine learning method: gradient boosted trees, is applied and compared to the typical maximum likelihood method. We demonstrate that enrollment factors (such as changing a major) lead to greater increases in model predictive performance of when a student graduates than performance factors (such as grades) or preparation (such as high school GPA).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源