论文标题

嘈杂的机器

Noisy Machines

论文作者

Kewming, Michael

论文摘要

如果不从外部能源引入噪声,可以作为物理子系统的抽象概念作为物理子系统存在。像所有其他物理系统一样,物理图灵机必须将来自外部环境的能量转换为有用的工作,从而使它们遵守热力学定律。因此,包括Godel和Turing在内的渐近数学定理对物理世界没有任何影响,因为它们在物理系统中永远无法真正实现。相反,这些定理强调了柏拉图形式(数学)和对象(物理)之间看似不可思议的鸿沟。

The abstract notion of a Universal Turing machine cannot exist as a physical subsystem without the introduction of noise from an external energy source. Like all other physical systems, physical Turing machines must convert energy sourced from an external environment into useful work, thus subjecting them to the laws of thermodynamics. Consequently, asymptotic mathematical theorems including those derived by Godel and Turing do not bear any consequence on physical world because they can never be truly realised in physical systems. Rather these theorems highlight the seemingly unbridgeable chasm between Platonic forms (mathematics) and objects (physics).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源