论文标题
卢卡斯一致的apéry数字模型$ p^2 $
Lucas congruences for the Apéry numbers modulo $p^2$
论文作者
论文摘要
Apéry数字的序列$ a(n)_ {n \ geq 0} $可以通过整个函数将其内插至$ \ mathbb {c} $。我们给出了以原点为中心的泰勒系数的公式,作为$ \ mathbb {z} $ - 多个Zeta值的线性组合。然后,我们证明,对于整数$ n $,其基本$ p $数字属于某个集合,$ a(n)$满足卢卡斯一致性模型$ p^2 $。
The sequence $A(n)_{n \geq 0}$ of Apéry numbers can be interpolated to $\mathbb{C}$ by an entire function. We give a formula for the Taylor coefficients of this function, centered at the origin, as a $\mathbb{Z}$-linear combination of multiple zeta values. We then show that for integers $n$ whose base-$p$ digits belong to a certain set, $A(n)$ satisfies a Lucas congruence modulo $p^2$.