论文标题

三维二阶拓扑绝缘子中的铰链孤子

Hinge solitons in three-dimensional second-order topological insulators

论文作者

Tao, Yu-Liang, Dai, Ning, Yang, Yan-Bin, Zeng, Qi-Bo, Xu, Yong

论文摘要

三个维度的二阶拓扑绝缘子是指具有铰链上无间隙状态的拓扑绝缘子,这是对传统的拓扑绝缘子的概括,其在表面上定位的无间隙状态。从理论上讲,我们在这里证明了涉及非线性时在三个维度上固定在二阶拓扑绝缘子的铰链上的稳定孤子的存在。通过系统的数值研究,我们发现孤子在实际空间中具有很强的定位,并在铰链上单向传播而不会改变其形状。我们进一步构建了一个电网来模拟二阶拓扑绝缘子。当适当涉及非线性电感器时,我们发现该系统可以为电压脉冲的稳定时间演变所证明的电压分布提供明亮的孤子。

A second-order topological insulator in three dimensions refers to a topological insulator with gapless states localized on the hinges, which is a generalization of a traditional topological insulator with gapless states localized on the surfaces. Here we theoretically demonstrate the existence of stable solitons localized on the hinges of a second-order topological insulator in three dimensions when nonlinearity is involved. By means of systematic numerical study, we find that the soliton has strong localization in real space and propagates along the hinge unidirectionally without changing its shape. We further construct an electric network to simulate the second-order topological insulator. When a nonlinear inductor is appropriately involved, we find that the system can support a bright soliton for the voltage distribution demonstrated by stable time evolution of a voltage pulse.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源