论文标题

Hopf-Elgebraic Dyson-Schwinger方程的非扰动完成

Non-Perturbative Completion of Hopf-Algebraic Dyson-Schwinger Equations

论文作者

Borinsky, Michael, Dunne, Gerald V.

论文摘要

对于某些量子场理论,重新归一化的Kreimer-connes Hopf - gengebraic方法可将dyson-Schwinger方程降低到非线性普通微分方程的系统,以换取重态化绿色功能的扩展系数。我们采用复兴的渐近分析来找到跨系列解决方案,这些解决方案可提供这些正式的戴森 - 辛格替补的非扰动完成。我们用四维无质量宽川理论的具体示例说明了总体方法,并与Broadhurst和Kreimer发现的确切功能解决方案相连。跨系列解决方案与Dyson-Schwinger方程的迭代形式相关联,并显示了整数重复的Borel单数字的肾上腺样结构。由于我们称之为“功能复苏”的属性,可以提取Stokes常数。

For certain quantum field theories, the Kreimer-Connes Hopf-algebraic approach to renormalization reduces the Dyson-Schwinger equations to a system of non-linear ordinary differential equations for the expansion coefficients of the renormalized Green's function. We apply resurgent asymptotic analysis to find the trans-series solutions which provide the non-perturbative completion of these formal Dyson-Schwinger expansions. We illustrate the general approach with the concrete example of four dimensional massless Yukawa theory, connecting with the exact functional solution found by Broadhurst and Kreimer. The trans-series solution is associated with the iterative form of the Dyson-Schwinger equations, and displays renormalon-like structure of integer-repeated Borel singularities. Extraction of the Stokes constant is possible due to a property we call `functional resurgence'.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源