论文标题
平面五点一质量过程的两环积分
Two-Loop Integrals for Planar Five-Point One-Mass Processes
论文作者
论文摘要
我们介绍了一组完整的平面五点两循环主积分,其中一个外部质量。这些积分是QCD领先颜色的两射流相关的W-boson产生的两环散射幅度的重要成分。我们提供一组纯积分以及以规范形式的微分方程。我们从有限字段上的数值样本有效地获得了分析微分方程,这拟合了由符号字母构建的ANSATZ。符号字母本身是由切割的微分方程构建的,我们发现它可以以非常紧凑的形式写成。我们对积分的分析属性发表评论,并确认延长的Steinmann关系,该关系管理Feynman积分的双重不连续性,以$ε$中的所有订单。我们根据Mandelstam不变性空间中的单参数轮廓上的广义功率序列解决了微分方程。该解决方案的这种形式使分析延续琐碎,并且可以在所有具有任意数值精度的运动区域中评估积分。
We present the computation of a full set of planar five-point two-loop master integrals with one external mass. These integrals are an important ingredient for two-loop scattering amplitudes for two-jet-associated W-boson production at leading color in QCD. We provide a set of pure integrals together with differential equations in canonical form. We obtain analytic differential equations efficiently from numerical samples over finite fields, fitting an ansatz built from symbol letters. The symbol alphabet itself is constructed from cut differential equations and we find that it can be written in a remarkably compact form. We comment on the analytic properties of the integrals and confirm the extended Steinmann relations, which govern the double discontinuities of Feynman integrals, to all orders in $ε$. We solve the differential equations in terms of generalized power series on single-parameter contours in the space of Mandelstam invariants. This form of the solution trivializes the analytic continuation and the integrals can be evaluated in all kinematic regions with arbitrary numerical precision.