论文标题

使用先前路径的人造潜在领域的自适应运动计划

Adaptive Motion Planning with Artificial Potential Fields Using a Prior Path

论文作者

Amiryan, Javad, Jamzad, Mansour

论文摘要

自主代理中的运动计划负责提供平稳,安全和高效的导航。已经提供了许多解决此问题的解决方案,其中之一就是人造潜在领域(APF)。 APF是一种简单且计算低成本的方法,可使机器人远离环境的障碍。但是,这种方法遭受了捕获潜在功能的局部最小值,然后未能产生运动计划。此外,存在障碍物或狭窄段落中的振荡是该方法的另一个缺点,这使得它无资格解决许多计划问题。在本文中,我们旨在通过一种新型方法来解决这些缺陷,该方法采用了机器人的原点和目标配置之间的先前路径。因此,计划者保证将机器人带到目标区域,而潜在领域的固有优势仍然存在。对于路径计划阶段,我们打算使用随机抽样方法,例如快速探索的随机树(RRT)或其衍生物,但是,可以使用任何路径计划方法。我们还设计了一个优化程序,用于将运动计划发展为最佳解决方案。然后,应用遗传算法以找到更顺畅,更安全和较短的计划。在我们的实验中,我们在Webots模拟器中使用模拟车辆来测试和评估运动计划者。我们的实验展示了与基本方法相比,我们的方法享受提高性能和速度的方法。

Motion planning in an autonomous agent is responsible for providing smooth, safe and efficient navigation. Many solutions for dealing this problem have been offered, one of which is, Artificial Potential Fields (APF). APF is a simple and computationally low cost method which keeps the robot away from the obstacles in environment. However, this approach suffers from trapping in local minima of potential function and then fails to produce motion plans. Furthermore, Oscillation in presence of obstacles or in narrow passages is another disadvantage of the method which makes it unqualified for many planning problems. In this paper we aim to resolve these deficiencies by a novel approach which employs a prior path between origin and goal configuration of the robot. Therefore, the planner guarantees to lead the robot to goal area while the inherent advantages of potential fields remain. For path planning stage, we intend to use randomized sampling methods such as Rapidly-exploring Random Trees (RRT) or its derivatives, however, any path planning approach can be utilized. We have also designed an optimization procedure for evolving the motion plans towards optimal solution. Then genetic algorithm is applied to find smoother, safer and shorter plans. In our experiments, we apply a simulated vehicle in Webots simulator to test and evaluate the motion planner. Our experiments showed our method to enjoy improving the performance and speed in comparison to basic approaches.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源