论文标题
广义Langevin方程的显式解决方案
Explicit solution of the generalised Langevin equation
论文作者
论文摘要
使用内存的兰格文方程生成初始条件是一个非微不足道的问题。我们将拉普拉斯变换的概括作为解决此问题的有用工具,其中极限过程可能会将内存效应扩展到过去的任意时间。这种方法使我们能够通过谐波电位来计算平均位置,工作,它们的方差和粒子的熵产生速率,这可能代表移动光学镊子的效果。对于均衡中的初始条件,我们将van Zon和Cohen的结果推广,找到了陷阱通用协议的工作方差。此外,我们研究了一个长时间捕获的粒子在稳定状态下恒定速度的光学陷阱中捕获。我们的公式为有记忆的系统中的热力学不确定性关系打开了大门。
Generating an initial condition for a Langevin equation with memory is a non trivial issue. We introduce a generalisation of the Laplace transform as a useful tool for solving this problem, in which a limit procedure may send the extension of memory effects to arbitrary times in the past. This method allows us to compute average position, work, their variances and the entropy production rate of a particle dragged in a complex fluid by an harmonic potential, which could represent the effect of moving optical tweezers. For initial conditions in equilibrium we generalise the results by van Zon and Cohen, finding the variance of the work for generic protocols of the trap. In addition, we study a particle dragged for a long time captured in an optical trap with constant velocity in a steady state. Our formulas open the door to thermodynamic uncertainty relations in systems with memory.