论文标题
电化学中的微型和纳米结构钻石:制造和应用
Micro- and Nanostructured Diamond in Electrochemistry: Fabrication and Application
论文作者
论文摘要
钻石纳米结构的制造方法可以分为两类:自上而下的蚀刻和底部生长。 3D微型结构钻石上的早期工作可以追溯到1990年代中期,使用化学蒸气浸润(CVI)技术。在这项技术中,通常将碳或碳化物纤维用作生长模板。几乎并联,反应性离子蚀刻(RIE)用于实现钻石表面纳米结构。之后,通常使用自上而下的等离子体蚀刻技术制造了钻石表面纳米结构,通常是垂直排列的钻石纳米线(或纳米棒)。近年来,由于模板的广泛选择,无面膜的产生和无限的表面增大,模板的钻石生长引起了人们的关注。在本章中,将详细阐述这两种方法中使用的开发和主要技术。然而,还将讨论其他较不常见的方法,例如金属颗粒催化蚀刻,蒸汽激活和选择性材料去除。如标题所示,本章将主要涉及微和纳米结构的钻石在电化学中的应用。在这些应用中,纳米结构的钻石的优势可以分为三个方面:1)提供扩大的表面积以进行电荷存储和催化剂沉积; 2)用于传感应用中使用的尖端增强的电化学反应; 3)具有微孔或纳米孔的钻石膜可用于电化学分离和纯化应用。本章将提供有关这些应用程序的示例和解释。
The fabrication method of diamond nanostructures can be divided into two categories: top-down etching and bottom-growth. The early work on 3D micro-structured diamond dates back to mid-1990s, using chemical vapor infiltration (CVI) techniques. In this technology, carbon or carbide fibers were typically used as the growth template. Almost in parallel, reactive ion etching (RIE) was applied to achieve diamond surface nanostructuring. After that the diamond surface nanostructures, typically vertically aligned diamond nanowires (or nanorods) has been mainly fabricated using top-down plasma etching techniques. In recent year, the templated diamond growth has gained increasing attention due to the wide choice of template, mask-free production, and unlimited surface enlargement. In this chapter, the development and main techniques used in these two approaches will be elaborated. Nevertheless, other less common methods, such as catalytic etching by metal particles, steam activation and selective materials removal will also be discussed. As indicated by the title, this chapter will mainly deal with the application of micro- and nanostructured diamond in electrochemistry. In these applications, the advantage of nanostructured diamond can be divided into three aspects: 1) providing enlarged surface area for charge storage and catalyst deposition; 2) tip-enhanced electrochemical reactions used in sensing applications; 3) diamond membranes with micro- or nanopores can be applied in the electrochemistry separation and purification applications. Examples and explanations on these applications will be given in this chapter.