论文标题
通过机器学习增强引力波科科学
Enhancing Gravitational-Wave Science with Machine Learning
论文作者
论文摘要
机器学习已成为解决天体物理学问题的一种流行而有力的方法。我们回顾了机器学习技术的应用,用于分析地面重力波检测器数据。示例包括用于提高高级期权和高级处女座重力波搜索敏感性的技术,快速测量引力波源的天体物理参数的方法,以及降低和表征非attrophysythystical检测器噪声的算法。这些应用表明了如何利用机器学习技术来增强当前和未来的重力波探测器的可能科学。
Machine learning has emerged as a popular and powerful approach for solving problems in astrophysics. We review applications of machine learning techniques for the analysis of ground-based gravitational-wave detector data. Examples include techniques for improving the sensitivity of Advanced LIGO and Advanced Virgo gravitational-wave searches, methods for fast measurements of the astrophysical parameters of gravitational-wave sources, and algorithms for reduction and characterization of non-astrophysical detector noise. These applications demonstrate how machine learning techniques may be harnessed to enhance the science that is possible with current and future gravitational-wave detectors.