论文标题
从正向限制的一环相关器和BCJ分子
One-loop Correlators and BCJ Numerators from Forward Limits
论文作者
论文摘要
我们提出了针对任何偶数级别理论的一环式轴弦线相关器的新公式。我们的结果是由RNS形式主义中的树级两倍相关因子的新的全型表达式驱动的,与纯粹的玻色孔相关。在使用另外一对费米斯/玻色子对树级相关器进行前向限制后,单循环相关器成为向量和旋转表示形式中Lorentz痕迹的组合。这两种类型的迹线之间的身份表现出所有超对称性取消和环动量的功率计数。我们还从手性费米子的远期限制中获得了奇偶校验贡献。可以使用Yang-Mills理论中良好的树级技术从此类相关器中提取具有线性传播器的图表的Bern-Carrasco-Johansson(BCJ)双重性的单循环分子二重性。最后,我们使用多粒子字段获得了最多七个点的BCJ分子表达式。
We present new formulas for one-loop ambitwistor-string correlators for gauge theories in any even dimension with arbitrary combinations of gauge bosons, fermions and scalars running in the loop. Our results are driven by new all-multiplicity expressions for tree-level two-fermion correlators in the RNS formalism that closely resemble the purely bosonic ones. After taking forward limits of tree-level correlators with an additional pair of fermions/bosons, one-loop correlators become combinations of Lorentz traces in vector and spinor representations. Identities between these two types of traces manifest all supersymmetry cancellations and the power counting of loop momentum. We also obtain parity-odd contributions from forward limits with chiral fermions. One-loop numerators satisfying the Bern-Carrasco-Johansson (BCJ) duality for diagrams with linearized propagators can be extracted from such correlators using the well-established tree-level techniques in Yang-Mills theory coupled to biadjoint scalars. Finally, we obtain streamlined expressions for BCJ numerators up to seven points using multiparticle fields.