论文标题
Heidelberg大肠数据集用于传感器手术室中的手术数据科学
Heidelberg Colorectal Data Set for Surgical Data Science in the Sensor Operating Room
论文作者
论文摘要
基于图像的医学仪器跟踪是手术数据科学应用程序不可或缺的一部分。先前的研究已经解决了基于腹腔镜视频数据检测,细分和跟踪医疗工具的任务。但是,当应用于具有挑战性的图像时,提出的方法仍然往往会失败,并且不能很好地推广到尚未接受过培训的数据。本文介绍了海德堡结直肠(HEICO)数据集 - 第一个公开可用的数据集,实现了医学仪器检测和分割算法的全面基准测试,并特别强调了方法的鲁棒性和概括能力。我们的数据集包括30个腹腔镜视频和手术室中医疗设备的相应传感器数据,用于三种不同类型的腹腔镜手术。注释包括所有视频框架的手术相标签,以及有关仪器的存在和相应的实例分割掩模的信息,用于手术仪器(如果有的话),则有10,000多个单独的框架。这些数据已成功地用于在2017年和2019年内窥镜视觉挑战中组织国际竞争。
Image-based tracking of medical instruments is an integral part of surgical data science applications. Previous research has addressed the tasks of detecting, segmenting and tracking medical instruments based on laparoscopic video data. However, the proposed methods still tend to fail when applied to challenging images and do not generalize well to data they have not been trained on. This paper introduces the Heidelberg Colorectal (HeiCo) data set - the first publicly available data set enabling comprehensive benchmarking of medical instrument detection and segmentation algorithms with a specific emphasis on method robustness and generalization capabilities. Our data set comprises 30 laparoscopic videos and corresponding sensor data from medical devices in the operating room for three different types of laparoscopic surgery. Annotations include surgical phase labels for all video frames as well as information on instrument presence and corresponding instance-wise segmentation masks for surgical instruments (if any) in more than 10,000 individual frames. The data has successfully been used to organize international competitions within the Endoscopic Vision Challenges 2017 and 2019.