论文标题
在Perron根和特征向量上,与有限类型的子迁移相关
On the Perron root and eigenvectors associated with a subshift of finite type
论文作者
论文摘要
在本文中,我们描述了有限类型的不可还原subsift的perron root与特征向量之间的关系与子移动中禁止单词之间的相关性之间的关系。特别是,我们得出了相关邻接矩阵的Perron特征向量的表达式。作为应用程序,我们获得了不可约(0,1)$矩阵的Perron特征向量,该矩阵是有向图的邻接矩阵。此外,我们在不可还原型的有限类型的子迁移中得出了帕里度量的替代定义。
In this paper, we describe the relationship between the Perron root and eigenvectors of an irreducible subshift of finite type with the correlation between the forbidden words in the subshift. In particular, we derive an expression for the Perron eigenvectors of the associated adjacency matrix. As an application, we obtain the Perron eigenvectors for irreducible $(0,1)$ matrices which are adjacency matrices for directed graphs. Moreover, we derive an alternate definition of the Parry measure in ergodic theory on an irreducible subshift of finite type.