论文标题

第一原告简单遗传回路信息处理能力的预测

First-principles prediction of the information processing capacity of a simple genetic circuit

论文作者

Razo-Mejia, Manuel, Marzen, Sarah, Chure, Griffin, Taubman, Rachel, Morrison, Muir, Phillips, Rob

论文摘要

鉴于基因表达的随机性质,暴露于相同环境输入的遗传相同细胞将产生不同的输出。假设这种异质性对细胞如何在不断变化的环境中生存产生了影响。最近的工作探索了信息理论作为一个框架,以了解细胞可以确定周围环境状态的准确性。然而,这些方法的预测能力是有限的,并且尚未使用精确测量进行严格测试。为此,我们为简单的遗传回路生成了最小模型,其中该模型的所有参数值均来自独立发布的数据集。然后,我们预测了遗传回路的信息处理能力,用于一组生物物理参数,例如蛋白质拷贝数和蛋白-DNA亲和力。我们将这些无参数预测与蛋白质表达分布的实验确定和大肠杆菌细胞的信息处理能力进行了比较。我们发现,我们的最小模型捕获了数据中细胞对细胞变异性的缩放,并捕获了我们简单遗传电路的推断信息处理能力,直到系统偏差。

Given the stochastic nature of gene expression, genetically identical cells exposed to the same environmental inputs will produce different outputs. This heterogeneity has been hypothesized to have consequences for how cells are able to survive in changing environments. Recent work has explored the use of information theory as a framework to understand the accuracy with which cells can ascertain the state of their surroundings. Yet the predictive power of these approaches is limited and has not been rigorously tested using precision measurements. To that end, we generate a minimal model for a simple genetic circuit in which all parameter values for the model come from independently published data sets. We then predict the information processing capacity of the genetic circuit for a suite of biophysical parameters such as protein copy number and protein-DNA affinity. We compare these parameter-free predictions with an experimental determination of protein expression distributions and the resulting information processing capacity of E. coli cells. We find that our minimal model captures the scaling of the cell-to-cell variability in the data and the inferred information processing capacity of our simple genetic circuit up to a systematic deviation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源