论文标题
(标准模型)有效野外理论空间的凸几何视角
Convex Geometry Perspective to the (Standard Model) Effective Field Theory Space
论文作者
论文摘要
我们向有效场理论(EFT)参数空间提供了凸几何视角。我们表明,向前EFT振幅的第二美元$ S $衍生物形成了凸锥,其极端射线与紫外线理论中的状态紧密相关。对于树级的紫外线完成,这些射线仅仅是理论的理论,所有紫外线颗粒最多都生活在理论的对称性的不可约代表中。此外,所有极端射线均由对称性确定,可以通过组理论考虑系统地确定。含义是双重的。首先,在EFT空间中编码的几何信息可以帮助重建紫外线完成。特别是,我们将表明,DIM-8运算符在从标准模型EFT中逆转UV物理学方面很重要,因此应该得到更多的理论和实验研究。其次,可以通过识别锥体的边界来获得威尔逊系数上的理论界限,并且通常比当前的阳性界限更强。我们展示了这些新界限的明确例子,并证明它们源自与纠缠状态相对应的散射幅度。
We present a convex geometry perspective to the Effective Field Theory (EFT) parameter space. We show that the second $s$ derivatives of the forward EFT amplitudes form a convex cone, whose extremal rays are closely connected with states in the UV theory. For tree-level UV-completions, these rays are simply theories with all UV particles living in at most one irreducible representation of the symmetries of the theory. In addition, all the extremal rays are determined by the symmetries and can be systematically identified via group theoretical considerations. The implications are twofold. First, geometric information encoded in the EFT space can help reconstruct the UV-completion. In particular, we will show that the dim-8 operators are important in reverse-engineering the UV physics from the Standard Model EFT, and thus deserve more theoretical and experimental investigations. Second, theoretical bounds on the Wilson coefficients can be obtained by identifying the boundaries of the cone and are in general stronger than the current positivity bounds. We show explicit examples of these new bounds, and demonstrate that they originate from the scattering amplitudes corresponding to entangled states.