论文标题

使用有效层面网络(ELNET)的MRI进行膝关节损伤检测

Knee Injury Detection using MRI with Efficiently-Layered Network (ELNet)

论文作者

Tsai, Chen-Han, Kiryati, Nahum, Konen, Eli, Eshed, Iris, Mayer, Arnaldo

论文摘要

磁共振成像(MRI)是一种膝关节损伤分析的广泛认可的成像技术。它在三个维度上捕获膝盖结构的优势使其成为放射科医生在膝盖中找到潜在眼泪的理想工具。为了更好地面对肌肉骨骼(MSK)放射科医生不断增长的工作量,患者分类的自动化工具已成为真正的需求,从而减少了病理案例的延迟。在这项工作中,我们介绍了有效层面网络(ELNET),该网络是针对Triage初始膝盖MRI诊断的任务优化的卷积神经网络(CNN)体系结构。与过去的方法不同,我们从头开始训练Elnet,而不是使用转移学习方法。该方法在定量和定性上进行了验证,并在使用单个成像堆栈(轴向或冠状)作为输入时对最新的mRNET进行了有利的比较。此外,尽管在训练过程中没有本地化信息,但我们证明了模型在膝盖中定位泪水的能力。最后,拟议的模型非常轻巧($ <$ 1MB),因此易于训练和部署在实际临床环境中。我们的模型代码提供:https://github.com/mxtsai/elnet。

Magnetic Resonance Imaging (MRI) is a widely-accepted imaging technique for knee injury analysis. Its advantage of capturing knee structure in three dimensions makes it the ideal tool for radiologists to locate potential tears in the knee. In order to better confront the ever growing workload of musculoskeletal (MSK) radiologists, automated tools for patients' triage are becoming a real need, reducing delays in the reading of pathological cases. In this work, we present the Efficiently-Layered Network (ELNet), a convolutional neural network (CNN) architecture optimized for the task of initial knee MRI diagnosis for triage. Unlike past approaches, we train ELNet from scratch instead of using a transfer-learning approach. The proposed method is validated quantitatively and qualitatively, and compares favorably against state-of-the-art MRNet while using a single imaging stack (axial or coronal) as input. Additionally, we demonstrate our model's capability to locate tears in the knee despite the absence of localization information during training. Lastly, the proposed model is extremely lightweight ($<$ 1MB) and therefore easy to train and deploy in real clinical settings. The code for our model is provided at: https://github.com/mxtsai/ELNet.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源