论文标题

依赖性意识到过滤器修剪

Dependency Aware Filter Pruning

论文作者

Zhao, Kai, Zhang, Xin-Yu, Han, Qi, Cheng, Ming-Ming

论文摘要

卷积神经网络(CNN)通常被过度参数化,从而在推理中带来了相当大的计算开销和内存足迹。修剪一部分不重要的过滤器是减轻推理成本的有效方法。为此,确定不重要的卷积过滤器是有效过滤修剪的关键。先前的工作根据其重量规范或相应的批次缩放因子过滤,同时忽略了相邻层之间的顺序依赖性。在本文中,我们通过考虑相邻层之间的依赖性来进一步发展基于规范的重要性估计。此外,我们提出了一种新型机制,可以动态控制稀疏性诱导正则化,以达到所需的稀疏性。这样,我们可以以更有原则的方式确定不重要的过滤器并在某些资源预算中搜索最佳网络体系结构。全面的实验结果表明,所提出的方法对CIFAR,SVHN和Imagenet数据集的现有强基线表现出色。审查过程后,培训资源将公开可用。

Convolutional neural networks (CNNs) are typically over-parameterized, bringing considerable computational overhead and memory footprint in inference. Pruning a proportion of unimportant filters is an efficient way to mitigate the inference cost. For this purpose, identifying unimportant convolutional filters is the key to effective filter pruning. Previous work prunes filters according to either their weight norms or the corresponding batch-norm scaling factors, while neglecting the sequential dependency between adjacent layers. In this paper, we further develop the norm-based importance estimation by taking the dependency between the adjacent layers into consideration. Besides, we propose a novel mechanism to dynamically control the sparsity-inducing regularization so as to achieve the desired sparsity. In this way, we can identify unimportant filters and search for the optimal network architecture within certain resource budgets in a more principled manner. Comprehensive experimental results demonstrate the proposed method performs favorably against the existing strong baseline on the CIFAR, SVHN, and ImageNet datasets. The training sources will be publicly available after the review process.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源