论文标题

构建以用户为中心和内容驱动的Socialbot

Building A User-Centric and Content-Driven Socialbot

论文作者

Fang, Hao

论文摘要

为了构建音调板,我们开发了一个系统体系结构,该系统架构能够适应我们为社交机器人对话设计的对话策略。该体系结构由一个多维语言理解模块组成,用于分析用户话语,对话框上下语的层次对话框管理框架和复杂的对话框控制以及一种实现响应计划并对语音综合进行调整的语言生成过程。此外,我们通过从各种来源收集社交聊天内容来构建一个新的知识基础来为社交机器人提供动力。系统的一个重要贡献是知识库和对话管理之间的协同作用,即使用图形结构来组织知识库,使对话框控制非常有效地将相关内容带入讨论。使用竞争期间从响应板收集的数据,我们对社交机器人对话和用户评分进行了深入的分析,这些分析为社交机器人的评估方法提供了宝贵的见解。我们还研究了一种新的系统评估和诊断方法,该方法允许在对话中评分单个对话段。最后,观察到社交机器人遇到有关与非结构化数据相关的主题的肤浅对话问题,我们研究了实现基于文档上的扩展社交机器人对话的问题。为了汇集机器阅读和对话框控制技术,提出了基于图的文档表示形式,以及自动构造图形的方法。使用基于图的表示形式,可以通过检索节点或沿图中的边缘移动来执行对话框控件。为了说明使用情况,为新闻文章的社交机器人对话而设计了混合定位的对话策略。

To build Sounding Board, we develop a system architecture that is capable of accommodating dialog strategies that we designed for socialbot conversations. The architecture consists of a multi-dimensional language understanding module for analyzing user utterances, a hierarchical dialog management framework for dialog context tracking and complex dialog control, and a language generation process that realizes the response plan and makes adjustments for speech synthesis. Additionally, we construct a new knowledge base to power the socialbot by collecting social chat content from a variety of sources. An important contribution of the system is the synergy between the knowledge base and the dialog management, i.e., the use of a graph structure to organize the knowledge base that makes dialog control very efficient in bringing related content to the discussion. Using the data collected from Sounding Board during the competition, we carry out in-depth analyses of socialbot conversations and user ratings which provide valuable insights in evaluation methods for socialbots. We additionally investigate a new approach for system evaluation and diagnosis that allows scoring individual dialog segments in the conversation. Finally, observing that socialbots suffer from the issue of shallow conversations about topics associated with unstructured data, we study the problem of enabling extended socialbot conversations grounded on a document. To bring together machine reading and dialog control techniques, a graph-based document representation is proposed, together with methods for automatically constructing the graph. Using the graph-based representation, dialog control can be carried out by retrieving nodes or moving along edges in the graph. To illustrate the usage, a mixed-initiative dialog strategy is designed for socialbot conversations on news articles.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源