论文标题

使用软贝叶斯添加剂树(SBART)对聚类间隔审查的生存数据进行半参数分析

Semiparametric analysis of clustered interval-censored survival data using Soft Bayesian Additive Regression Trees (SBART)

论文作者

Basak, Piyali, Linero, Antonio R., SInha, Debajyoti, Lipsitz, Stuart

论文摘要

当不同协变量和聚类的未知效果复杂时,用于聚类生存数据的流行参数和半参数危害回归模型是不合适的,并且不足。这需要一个灵活的建模框架来产生有效的生存预测。此外,对于一些涉及某些无症状事件的时间的生存研究,通常会在连续的临床检查之间审查生存时间。在本文中,我们提出了一个强大的半参数模型,用于在贝叶斯合奏学习的范式下用于聚类间隔审查的生存数据,称为软贝叶斯添加剂回归树或Sbart(Linero and Yang,2018),结合了多个稀疏(软)决策树,以达到出色的预测精度。我们通过将危害函数建模为参数基线危害函数的产物和非参数组件来开发一种新型的半参数危害回归模型,该危险功能使用SBART结合了聚类的主要功能形式,主要效应的函数形式以及各种协变量的相互作用。除了适用于左审核,右审查和间隔审查的生存数据外,我们的方法还使用数据增强方案实施,该方案允许使用现有的贝叶斯背贴算法。我们通过模拟研究说明了我们方法的实际实施和优势,并对前列腺癌手术研究进行了分析,其中依赖医生的经验和技能水平会导致生存时间聚类。最后,我们通过讨论我们的方法在涉及具有复杂基础关联的高维数据的研究中的适用性。

Popular parametric and semiparametric hazards regression models for clustered survival data are inappropriate and inadequate when the unknown effects of different covariates and clustering are complex. This calls for a flexible modeling framework to yield efficient survival prediction. Moreover, for some survival studies involving time to occurrence of some asymptomatic events, survival times are typically interval censored between consecutive clinical inspections. In this article, we propose a robust semiparametric model for clustered interval-censored survival data under a paradigm of Bayesian ensemble learning, called Soft Bayesian Additive Regression Trees or SBART (Linero and Yang, 2018), which combines multiple sparse (soft) decision trees to attain excellent predictive accuracy. We develop a novel semiparametric hazards regression model by modeling the hazard function as a product of a parametric baseline hazard function and a nonparametric component that uses SBART to incorporate clustering, unknown functional forms of the main effects, and interaction effects of various covariates. In addition to being applicable for left-censored, right-censored, and interval-censored survival data, our methodology is implemented using a data augmentation scheme which allows for existing Bayesian backfitting algorithms to be used. We illustrate the practical implementation and advantages of our method via simulation studies and an analysis of a prostate cancer surgery study where dependence on the experience and skill level of the physicians leads to clustering of survival times. We conclude by discussing our method's applicability in studies involving high dimensional data with complex underlying associations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源