论文标题
快速动态切割,距离和有效的电阻通过顶点弹药来
Fast Dynamic Cuts, Distances and Effective Resistances via Vertex Sparsifiers
论文作者
论文摘要
我们提出了设计有效的动态近似算法的一般框架,以优化无方向的图。特别是,我们开发了一种技术,即鉴于任何问题允许某些顶点散布符概念的问题,可以提供数据结构,这些数据结构在子线性更新和查询时间中维护近似解决方案。我们说明了范式对以下问题的适用性。 (1)一种完全动态的算法,该算法将$ \ tilde {o}(n^{2/3})中的全对最大流量/最小算法近似为几乎对数因素,n^{2/3})$ amortized时间与遗忘的对手,以及$ \ tilde {o}(o villivious fielde {o}(o} a dimevers and and and and and and and and and and and and and and and and and and aid fime。 (2)维持$ o(1)$的增量数据结构 - $ n^{o(1)} $每次操作中的最短路径,以及完全动态的大约全对最短路径和转移$ \ tilde {o}(o}(n^{2/3+o(1)} $(2/3+o(1))$ amortized时间。 (3)一种完全动态的算法,该算法将全对有效阻力近似于$(1+ε)$ factor $ \ tilde {o}(n^{2/3+o(1)}ε^{ - o(1)})$ amortized更新。 结果(1)背后的关键工具是由于madry [focs'10]引起的算法结构的动态维护,该算法构造将图表分成一个简单的图结构(称为J-Trees)的集合,并近似捕获图形的切割和度量结构。 $ O(1)$ - (2)的近似保证是通过[Thorup-Zwick Jacm`05]调整距离甲骨文的。结果(3)是通过[Durfee等。 stoc`19]以层次结构的方式,同时仔细跟踪层次结构中级别之间的追索权。
We present a general framework of designing efficient dynamic approximate algorithms for optimization on undirected graphs. In particular, we develop a technique that, given any problem that admits a certain notion of vertex sparsifiers, gives data structures that maintain approximate solutions in sub-linear update and query time. We illustrate the applicability of our paradigm to the following problems. (1) A fully-dynamic algorithm that approximates all-pair maximum-flows/minimum-cuts up to a nearly logarithmic factor in $\tilde{O}(n^{2/3})$ amortized time against an oblivious adversary, and $\tilde{O}(m^{3/4})$ time against an adaptive adversary. (2) An incremental data structure that maintains $O(1)$-approximate shortest path in $n^{o(1)}$ time per operation, as well as fully dynamic approximate all-pair shortest path and transshipment in $\tilde{O}(n^{2/3+o(1)})$ amortized time per operation. (3) A fully-dynamic algorithm that approximates all-pair effective resistance up to an $(1+ε)$ factor in $\tilde{O}(n^{2/3+o(1)} ε^{-O(1)})$ amortized update time per operation. The key tool behind result (1) is the dynamic maintenance of an algorithmic construction due to Madry [FOCS' 10], which partitions a graph into a collection of simpler graph structures (known as j-trees) and approximately captures the cut-flow and metric structure of the graph. The $O(1)$-approximation guarantee of (2) is by adapting the distance oracles by [Thorup-Zwick JACM `05]. Result (3) is obtained by invoking the random-walk based spectral vertex sparsifier by [Durfee et al. STOC `19] in a hierarchical manner, while carefully keeping track of the recourse among levels in the hierarchy.