论文标题

Ntire 2020挑战视频质量映射:方法和结果

NTIRE 2020 Challenge on Video Quality Mapping: Methods and Results

论文作者

Fuoli, Dario, Huang, Zhiwu, Danelljan, Martin, Timofte, Radu, Wang, Hua, Jin, Longcun, Su, Dewei, Liu, Jing, Lee, Jaehoon, Kudelski, Michal, Bala, Lukasz, Hrybov, Dmitry, Mozejko, Marcin, Li, Muchen, Li, Siyao, Pang, Bo, Lu, Cewu, Li, Chao, He, Dongliang, Li, Fu, Wen, Shilei

论文摘要

本文回顾了NTIRE 2020挑战视频质量映射(VQM),该挑战涉及从源视频域到目标视频域的质量映射问题。挑战包括有监督的轨道(轨道1)和两个基准数据集的弱监督轨道(轨道2)。特别是,Track 1提供了一个新的Internet视频基准测试,需要算法从更受压缩的视频中学习地图,并以有监督的培训方式从压缩的视频中学习。在轨道2中,需要算法才能在质量差异很大且弱对齐的视频对时学习质量映射到另一台设备的质量映射。对于轨道1,总共有7支球队参加了最后的测试阶段,展示了解决问题的新颖和有效解决方案。对于轨道2,评估了一些现有的方法,显示了弱监督视频质量映射问题的有希望的解决方案。

This paper reviews the NTIRE 2020 challenge on video quality mapping (VQM), which addresses the issues of quality mapping from source video domain to target video domain. The challenge includes both a supervised track (track 1) and a weakly-supervised track (track 2) for two benchmark datasets. In particular, track 1 offers a new Internet video benchmark, requiring algorithms to learn the map from more compressed videos to less compressed videos in a supervised training manner. In track 2, algorithms are required to learn the quality mapping from one device to another when their quality varies substantially and weakly-aligned video pairs are available. For track 1, in total 7 teams competed in the final test phase, demonstrating novel and effective solutions to the problem. For track 2, some existing methods are evaluated, showing promising solutions to the weakly-supervised video quality mapping problem.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源