论文标题

多阶段对话通过检索:一种融合术语重要性估计和神经查询重写的方法

Multi-Stage Conversational Passage Retrieval: An Approach to Fusing Term Importance Estimation and Neural Query Rewriting

论文作者

Lin, Sheng-Chieh, Yang, Jheng-Hong, Nogueira, Rodrigo, Tsai, Ming-Feng, Wang, Chuan-Ju, Lin, Jimmy

论文摘要

会话搜索在对话信息寻求中起着至关重要的作用。由于寻求对话的信息的查询对于传统的临时信息检索(IR)系统是模棱两可的,这是由于自然语言对话中固有的核心和遗漏解决方案问题,因此解决这些歧义至关重要。在本文中,我们通过解决将查询歧义的查询模棱两可(Converpr)(Conspr)(Conspr)(Conspr)(Conspr),并以查询重新重新重新融合到多阶段的临时IR系统中。具体来说,我们提出了两种对话查询重新印度(CQR)方法:(1)术语重要性估计和(2)神经查询重写。对于前者,我们使用从基于频率的信号中提取的重要术语来扩展对话性查询。对于后者,我们将对话询问重新制定为自然,独立的,人类理解的查询,并以验证的序列 - 提议模型。对两种CQR方法的详细分析进行了定量和定性提供,解释了它们的优势,缺点和不同的行为。此外,为了利用两种CQR方法的优势,我们提出将其产出与相互等级融合相结合,产生最先进的检索效率,与TREC Cast 2019的最佳提交相比,NDCG@3方面提高了30%。

Conversational search plays a vital role in conversational information seeking. As queries in information seeking dialogues are ambiguous for traditional ad-hoc information retrieval (IR) systems due to the coreference and omission resolution problems inherent in natural language dialogue, resolving these ambiguities is crucial. In this paper, we tackle conversational passage retrieval (ConvPR), an important component of conversational search, by addressing query ambiguities with query reformulation integrated into a multi-stage ad-hoc IR system. Specifically, we propose two conversational query reformulation (CQR) methods: (1) term importance estimation and (2) neural query rewriting. For the former, we expand conversational queries using important terms extracted from the conversational context with frequency-based signals. For the latter, we reformulate conversational queries into natural, standalone, human-understandable queries with a pretrained sequence-tosequence model. Detailed analyses of the two CQR methods are provided quantitatively and qualitatively, explaining their advantages, disadvantages, and distinct behaviors. Moreover, to leverage the strengths of both CQR methods, we propose combining their output with reciprocal rank fusion, yielding state-of-the-art retrieval effectiveness, 30% improvement in terms of NDCG@3 compared to the best submission of TREC CAsT 2019.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源