论文标题

定向交换过程和最后一个通过

The oriented swap process and last passage percolation

论文作者

Bisi, Elia, Cunden, Fabio Deelan, Gibbons, Shane, Romik, Dan

论文摘要

我们提出了有关三个随机过程的新概率和组合身份:$ n $粒子上的定向交换过程,角落增长过程以及最后一个段落渗透模型。我们证明了概率的身份之一,将最后一段渗透时间的随机向量与二元相关,使用了Robinson-Schensted-Knuth和Burge对应关系之间的双重性。在定向交换过程中,将这两个向量与“最后交换时间”向量相关的第二个概率身份是猜想的。在首先将其作为纯粹的组合身份重新定义后,我们为$ n \ le 6 $提供了计算机辅助证明,并讨论了它与Edelman-Greene通信的关系。猜想的身份提供了有关定向交换过程吸收时间的分布的精确有限$ n $和渐近预测,因此有条件地解决了Angel,Holroyd和Romik提出的开放问题。

We present new probabilistic and combinatorial identities relating three random processes: the oriented swap process on $n$ particles, the corner growth process, and the last passage percolation model. We prove one of the probabilistic identities, relating a random vector of last passage percolation times to its dual, using the duality between the Robinson-Schensted-Knuth and Burge correspondences. A second probabilistic identity, relating those two vectors to a vector of 'last swap times' in the oriented swap process, is conjectural. We give a computer-assisted proof of this identity for $n\le 6$ after first reformulating it as a purely combinatorial identity, and discuss its relation to the Edelman-Greene correspondence. The conjectural identity provides precise finite-$n$ and asymptotic predictions on the distribution of the absorbing time of the oriented swap process, thus conditionally solving an open problem posed by Angel, Holroyd and Romik.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源