论文标题
SROM:使用LIDAR数据的自动驾驶汽车的简单实时探进行和映射
SROM: Simple Real-time Odometry and Mapping using LiDAR data for Autonomous Vehicles
论文作者
论文摘要
在本文中,我们提出了Srom,这是一种新型的实时同时定位和映射(SLAM)系统,用于自动驾驶汽车。该论文的主题演示表明了SROM以低采样率或高线性或角速度保持定位的能力,而最流行的基于激光痛的定位方法会很快降解。我们还证明了SROM是计算上有效的,并且能够处理高速操纵。它还可以达到低漂移,而无需任何其他传感器,例如IMU和/或GPS。我们的方法具有两层结构,首先,使用仅相关(POC)方法计算旋转角度和翻译参数的近似估计。接下来,我们将此估计值用作插件到平面ICP算法的初始化,以获得良好的匹配和注册。该算法的另一个关键特征是在与扫描匹配之前去除动态对象。这改善了我们系统的性能,因为动态对象会破坏匹配方案并出轨本地化。我们的SLAM系统可以同时构建可靠的地图,从而生成高质量的探光仪。我们从KITTI数据集中详尽地评估了许多挑战性的高速公路/国家/城市序列中提出的方法,结果与其他最先进的方法相比,在实时实现中有助于降低计算费用,结果表明了更好的准确性。我们还将我们的SROM系统与内部自动驾驶汽车相结合,并将其与诸如壤土和乐高润滑剂等最先进的方法进行了比较。
In this paper, we present SROM, a novel real-time Simultaneous Localization and Mapping (SLAM) system for autonomous vehicles. The keynote of the paper showcases SROM's ability to maintain localization at low sampling rates or at high linear or angular velocities where most popular LiDAR based localization approaches get degraded fast. We also demonstrate SROM to be computationally efficient and capable of handling high-speed maneuvers. It also achieves low drifts without the need for any other sensors like IMU and/or GPS. Our method has a two-layer structure wherein first, an approximate estimate of the rotation angle and translation parameters are calculated using a Phase Only Correlation (POC) method. Next, we use this estimate as an initialization for a point-to-plane ICP algorithm to obtain fine matching and registration. Another key feature of the proposed algorithm is the removal of dynamic objects before matching the scans. This improves the performance of our system as the dynamic objects can corrupt the matching scheme and derail localization. Our SLAM system can build reliable maps at the same time generating high-quality odometry. We exhaustively evaluated the proposed method in many challenging highways/country/urban sequences from the KITTI dataset and the results demonstrate better accuracy in comparisons to other state-of-the-art methods with reduced computational expense aiding in real-time realizations. We have also integrated our SROM system with our in-house autonomous vehicle and compared it with the state-of-the-art methods like LOAM and LeGO-LOAM.