论文标题
复曲面几何形状
Versality in toric geometry
论文作者
论文摘要
我们研究仿生孢子品种的变形。这些奇异性的整个变形理论由所谓的多种变形编码。我们论文的主要目的是构建某种程度-r的均匀部分,即给定特征R的最大变形,并用规定的切线空间t^1(-r)用于此目的。为此,我们使用了通过切割有理圆锥来定义的多面体,从而定义了由[r = 1]定义的贴型圆锥体,以定义有理圆锥。在该多面体边缘的某些长度假设下,我们以原始程度为原始的变形。
We study deformations of affine toric varieties. The entire deformation theory of these singularities is encoded by the so-called versal deformation. The main goal of our paper is to construct the homogeneous part of some degree -R of this, i.e. a maximal deformation with prescribed tangent space T^1(-R) for a given character R. To this aim we use the polyhedron obtained by cutting the rational cone defining the affine singularity with the hyperplane defined by [R=1]. Under some length assumptions on the edges of this polyhedron, we provide the versal deformation for primitive degrees R.