论文标题

自由电位功能

Free potential functions

论文作者

Augat, Meric L.

论文摘要

本文建立了两个经典定理的免费版本:衍生物是无卷曲的,每个无卷曲的向量场(在简单连接的域上)都是衍生物。我们表明,非交通性的自由分析图的衍生物必须是自由滚动的 - 一个为零卷曲的类似物。此外,在自由域已连接的假设下,这种必要的条件就足够了。具体而言,如果$ t $是在连接的自由域上定义的无分析矢量字段,则$ dt(x,h)[k,0] = dt(x,k)[x,k)[h,0] $,并且仅当存在一个分析免费的地图$ f $时,因此$ df(x)[x)[h] = h] = t(x,x,x,x,x,h)$。

This article establishes free versions of two classical theorems: derivatives are curl-free and every curl-free vector field (on a simply connected domain) is a derivative. We show that the derivative of a noncommutative free analytic map must be free-curl free -- an analog of having zero curl. Moreover, under the assumption that the free domain is connected, this necessary condition is sufficient. Specifically, if $T$ is analytic free vector field defined on a connected free domain then $DT(X,H)[K,0] = DT(X,K)[H,0]$ if and only if there exists an analytic free map $f$ such that $Df(X)[H] = T(X,H)$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源