论文标题

通过熵确定性原理的量子互补性

Quantum Complementarity through Entropic Certainty Principles

论文作者

Magan, Javier M., Pontello, Diego

论文摘要

我们从信息理论的角度来了解互补可观察的代数(COA)的非交通性质的物理意义。特别是,我们得出了一般的\ textit {熵确定性原理},指出两个相对熵的总和自然与COA相关,等于相关包含的所谓代数索引。不确定性关系是由于参与潜在熵确定性的相对熵的单调性而产生的。示例和应用在具有全局对称性的量子场理论中描述,其中COA是由电荷安装件本地运算符(Intertwiners)和对称组(Twist)的统一表示形成的,以及与本地对称性的理论,在此形成了Wilson和't Hooft loops的COA。通常,熵确定性原理自然捕获了有序/无序参数的物理,这一特征使其成为量子阶段的信息理论表征的通用手柄。

We approach the physical implications of the non-commutative nature of Complementary Observable Algebras (COA) from an information theoretic perspective. In particular, we derive a general \textit{entropic certainty principle} stating that the sum of two relative entropies, naturally related to the COA, is equal to the so-called algebraic index of the associated inclusion. Uncertainty relations then arise by monotonicity of the relative entropies that participate in the underlying entropic certainty. Examples and applications are described in quantum field theories with global symmetries, where the COA are formed by the charge-anticharge local operators (intertwiners) and the unitary representations of the symmetry group (twists), and in theories with local symmetries, where the COA are formed by Wilson and 't Hooft loops. In general, the entropic certainty principle naturally captures the physics of order/disorder parameters, a feature that makes it a generic handle for the information theoretic characterization of quantum phases.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源