论文标题
通过装饰树的分散方程基于共振的方案
Resonance based schemes for dispersive equations via decorated trees
论文作者
论文摘要
我们引入了一个数字框架,用于分散方程,将其基本共振结构嵌入离散化中。这将使我们能够解决PDE的非线性振荡,并以高阶的准确性近似于比经典技术所需的较低的规律性假设下的大类方程。控制系统中的非线性频率相互作用到任意高阶的关键思想在于量身定制的装饰树形式主义。我们的代数结构接近于具有规律性结构的单数SPDE开发的结构。我们通过使用新颖的装饰类{编码主导频率}来使其适应色散PDE的上下文。本文提出的结构是新的,并提供了装饰树上的屠夫 - 康涅斯 - 肯特里默啤酒霍夫布拉代数的变体。我们观察到与SPDE和扰动量子场理论相似的Birkhoff类型分解。这种分解使我们能够通过将振荡映射到解决方案的特定规律性来局限于局部误差。与文献相比,这种伯克霍夫分解的使用似乎是新的。奇异SPDE的领域通过通过装饰和泰勒膨胀的邻接来扩展其结构,利用了扰动量子场理论中的数值方法和重量量量的化。现在,通过这项工作,数值分析利用了这些扩展结构,并为它们提供了新的观点。
We introduce a numerical framework for dispersive equations embedding their underlying resonance structure into the discretisation. This will allow us to resolve the nonlinear oscillations of the PDE and to approximate with high order accuracy a large class of equations under lower regularity assumptions than classical techniques require. The key idea to control the nonlinear frequency interactions in the system up to arbitrary high order thereby lies in a tailored decorated tree formalism. Our algebraic structures are close to the ones developed for singular SPDEs with Regularity Structures. We adapt them to the context of dispersive PDEs by using a novel class of decorations {which encode the dominant frequencies}. The structure proposed in this paper is new and gives a variant of the Butcher-Connes-Kreimer Hopf algebra on decorated trees. We observe a similar Birkhoff type factorisation as in SPDEs and perturbative quantum field theory. This factorisation allows us to single out oscillations and to optimise the local error by mapping it to the particular regularity of the solution. This use of the Birkhoff factorisation seems new in comparison to the literature. The field of singular SPDEs took advantage of numerical methods and renormalisation in perturbative quantum field theory by extending their structures via the adjunction of decorations and Taylor expansions. Now, through this work, Numerical Analysis is taking advantage of these extended structures and provides a new perspective on them.