论文标题

火星:可延展的演员批判性增强学习调度程序

MARS: Malleable Actor-Critic Reinforcement Learning Scheduler

论文作者

Baheri, Betis, Tronge, Jacob, Fang, Bo, Li, Ang, Chaudhary, Vipin, Guan, Qiang

论文摘要

在本文中,我们介绍了MARS,这是一种基于成本吸引力,灵活的增强学习方法的新的针对HPC-Cloud基础架构的调度系统,该系统是下一代HPC-Cloud Resource Manager的中间层。火星从启发式工作负载中结合了预先训练的模型,并决定优化最具成本效益的策略。整个工作流程应用程序将分为几个优化的依赖子任务,然后基于预定义的资源管理计划,执行计划的任务后将生成奖励。最后,火星根据奖励更新深神经网络(DNN)模型。火星旨在通过增强机制优化现有模型。火星适应了工作流程应用程序的动态,选择了预先构建的调度策略(回填,SJF等)中最具成本效益的调度解决方案,并在运行时选择自学习的深神经网络模型。我们使用不同的现实工作流迹线评估火星。与最先进的方法相比,火星的性能可以提高5%-60%。

In this paper, we introduce MARS, a new scheduling system for HPC-cloud infrastructures based on a cost-aware, flexible reinforcement learning approach, which serves as an intermediate layer for next generation HPC-cloud resource manager. MARS ensembles the pre-trained models from heuristic workloads and decides on the most cost-effective strategy for optimization. A whole workflow application would be split into several optimizable dependent sub-tasks, then based on the pre-defined resource management plan, a reward will be generated after executing a scheduled task. Lastly, MARS updates the Deep Neural Network (DNN) model based on the reward. MARS is designed to optimize the existing models through reinforcement mechanisms. MARS adapts to the dynamics of workflow applications, selects the most cost-effective scheduling solution among pre-built scheduling strategies (backfilling, SJF, etc.) and self-learning deep neural network model at run-time. We evaluate MARS with different real-world workflow traces. MARS can achieve 5%-60% increased performance compared to the state-of-the-art approaches.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源