论文标题

cotangent复合物和汤姆光谱

The cotangent complex and Thom spectra

论文作者

Rasekh, Nima, Stonek, Bruno

论文摘要

通勤环地图的cotangent复合物是变形理论中的中心对象。自1990年代以来,它已被概括为$ e_ \ infty $ - 环光谱的同位环境。 在这项工作中,我们首先在$ \ infty $ - 类别的背景下建立,并使用Goodwillie的函数计算,以使文献中存在的$ e_ \ infty $ - 环光谱的cotangangent复合物的各种定义相等。然后,我们将注意力转向一个特定的例子。令$ r $为$ e_ \ infty $ -ring频谱,$ \ mathrm {pic}(r)$表示其picard $ e_ \ eftty $ -group。令$ mf $表示$ e_ \ infty $ - $ r $ -r $ -r $ -algebra的地图的$ e_ \ infty $ -groups $ f:g \ t to \ mathrm {pic}(pic}(r)$; $ MF $的例子由各种Coobordism Spectra提供。我们证明,$ r \ to MF $的Cotangent综合体等于$ MF $的Smash产品和与$ G $相关的结合频谱。

The cotangent complex of a map of commutative rings is a central object in deformation theory. Since the 1990s, it has been generalized to the homotopical setting of $E_\infty$-ring spectra in various ways. In this work we first establish, in the context of $\infty$-categories and using Goodwillie's calculus of functors, that various definitions of the cotangent complex of a map of $E_\infty$-ring spectra that exist in the literature are equivalent. We then turn our attention to a specific example. Let $R$ be an $E_\infty$-ring spectrum and $\mathrm{Pic}(R)$ denote its Picard $E_\infty$-group. Let $Mf$ denote the Thom $E_\infty$-$R$-algebra of a map of $E_\infty$-groups $f:G\to \mathrm{Pic}(R)$; examples of $Mf$ are given by various flavors of cobordism spectra. We prove that the cotangent complex of $R\to Mf$ is equivalent to the smash product of $Mf$ and the connective spectrum associated to $G$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源