论文标题

用于空间依赖数据的高维分类,并应用于神经影像学

High Dimensional Classification for Spatially Dependent Data with Application to Neuroimaging

论文作者

Li, Yingjie, Zhang, Liangliang, Maiti, Tapabrata

论文摘要

在研究阿尔茨海默氏病研究中,歧视阿尔茨海默氏病(AD)的患者是至关重要的任务。该任务可以通过线性判别分析(LDA)来实现,这是最经典和流行的分类技术之一。但是,由于大脑成像数据的高维度和空间依赖性,分类问题对于LDA而言变得具有挑战性。为了应对挑战,研究人员提出了各种方法,以将LDA推广到近年来。但是,这些现有方法尚未就如何合并空间依赖的结构达成任何共识。鉴于当前的需求和局限性,我们提出了一种新的分类方法,称为惩罚最大似然估计LDA(PMLE-LDA)。所提出的方法使用$ MAT \急性{E} RN $协方差函数来描述大脑区域的空间相关性。此外,PMLE旨在建模高维特征的稀疏度。空间位置信息用于解决协方差的奇异性。引入锥形技术以减轻计算负担。我们在理论上表明,所提出的方法不仅可以提供参数估计和特征选择的一致结果,还可以生成由具有特定空间依赖性结构的高维数据驱动的渐近最佳分类器。最后,该方法通过模拟和应用于ADNI数据进行验证,以分类阿尔茨海默氏症患者。

Discriminating patients with Alzheimer's disease (AD) from healthy subjects is a crucial task in the research of Alzheimer's disease. The task can be potentially achieved by linear discriminant analysis (LDA), which is one of the most classical and popular classification techniques. However, the classification problem becomes challenging for LDA because of the high-dimensionally and the spatial dependency of the brain imaging data. To address the challenges, researchers have proposed various ways to generalize LDA into high-dimensional context in recent years. However, these existing methods did not reach any consensus on how to incorporate spatially dependent structure. In light of the current needs and limitations, we propose a new classification method, named as Penalized Maximum Likelihood Estimation LDA (PMLE-LDA). The proposed method uses $Mat\acute{e}rn$ covariance function to describe the spatial correlation of brain regions. Additionally, PMLE is designed to model the sparsity of high-dimensional features. The spatial location information is used to address the singularity of the covariance. Tapering technique is introduced to reduce computational burden. We show in theory that the proposed method can not only provide consistent results of parameter estimation and feature selection, but also generate an asymptotically optimal classifier driven by high dimensional data with specific spatially dependent structure. Finally, the method is validated through simulations and an application into ADNI data for classifying Alzheimer's patients.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源