论文标题

通过高维扩展器进行本地测试的代码

Locally testable codes via high-dimensional expanders

论文作者

Dikstein, Yotam, Dinur, Irit, Harsha, Prahladh, Ron-Zewi, Noga

论文摘要

可局部测试的代码(LTC)是具有错误纠正的代码,具有本地测试仪,可以通过仅在非常少数(sublinear,通常是常数)数量的位置探测一个给定单词,从而将有效的编码人与与所有代码字相距“远”的单词区分开。此类代码构成了PCP的组合主链。一个主要的开放问题是是否存在具有正速率,恒定相对距离的LTC和可持续数量的查询数量的LTC。 在本文中,我们提出了一种使用高维扩张器的机械来构建此类LTC的新方法。为此,我们考虑代码的制革商表示,该代码由图和基本代码指定。非正式地,我们的结果指出,如果此图是高维扩展器的一部分,则代码的本地测试性来自基本代码的本地可检验性。 这项工作统一并概括了有关Hadamard,Reed-Muller的可测试性的已知结果,并取消了子空间复合体上的代码,所有这些结果均通过局部自我校正证明。但是,与以前的结果不同,恒定的自校正回合不足以足够,因为基础测试图的直径在高维扩展器中可能是对数较大的,而在所有已知的早期结果中都不是恒定的。我们通过进行对数的许多回合进行迭代自我校正来克服这一技术障碍,并使用高维扩展器的属性严格控制每次迭代的误差。 鉴于此结果,构建具有正速率和恒定相对距离的恒定质量LTC的缺失成分是基本代码与恒定高度高度扩张器相互作用良好的实例化。

Locally testable codes (LTC) are error-correcting codes that have a local tester which can distinguish valid codewords from words that are "far" from all codewords by probing a given word only at a very few (sublinear, typically constant) number of locations. Such codes form the combinatorial backbone of PCPs. A major open problem is whether there exist LTCs with positive rate, constant relative distance and testable with a constant number of queries. In this paper, we present a new approach towards constructing such LTCs using the machinery of high-dimensional expanders. To this end, we consider the Tanner representation of a code, which is specified by a graph and a base code. Informally, our result states that if this graph is part of a high-dimensional expander then the local testability of the code follows from the local testability of the base code. This work unifies and generalizes the known results on testability of the Hadamard, Reed-Muller and lifted codes on the Subspace Complex, all of which are proved via local self correction. However, unlike previous results, constant rounds of self correction do not suffice as the diameter of the underlying test graph can be logarithmically large in a high-dimensional expander and not constant as in all known earlier results. We overcome this technical hurdle by performing iterative self correction with logarithmically many rounds and tightly controlling the error in each iteration using properties of the high-dimensional expander. Given this result, the missing ingredient towards constructing a constant-query LTC with positive rate and constant relative distance is an instantiation of a base code that interacts well with a constant-degree high-dimensional expander.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源