论文标题

边界感知的上下文神经网络用于医学图像细分

Boundary-aware Context Neural Network for Medical Image Segmentation

论文作者

Wang, Ruxin, Chen, Shuyuan, Ji, Chaojie, Fan, Jianping, Li, Ye

论文摘要

医疗图像分割可以为进一步的临床分析和疾病诊断提供可靠的基础。通过卷积神经网络(CNN),医学图像分割的性能已显着提高。但是,大多数现有的基于CNN的方法通常在没有准确的对象边界的情况下会产生不满意的分割掩码。这是由有限的上下文信息和连续合并和卷积操作后的判别特征图不足引起的。因为医疗图像的特征是高层内的变化,阶层间的间隙和噪声,提取强大的上下文并汇总了用于细粒度分割的区分特征,如今仍然具有挑战性。在本文中,我们为2D医学图像分割制定了一个边界感知的环境神经网络(BA-NET),以捕获更丰富的上下文并保留细微的空间信息。 BA-NET采用编码器架构。在编码器网络的每个阶段,提出了金字塔边缘提取模块,以获得具有多个粒度的边缘信息。然后,我们设计了一个迷你多任务学习模块,用于共同学习以细分对象面具并检测病变边界。特别是,提出了一种新的互动关注,以桥接两个任务,以实现不同任务之间的信息互补性,从而有效地利用边界信息来提供强大的提示来更好地分割预测。最后,一个交叉功能融合模块旨在从整个编码器网络中选择性地汇总多层次功能。通过级联的三个模块,每个阶段的更丰富的上下文和细颗粒特征被编码。在五个数据集上进行的大量实验表明,拟议的BA-NET优于最先进的方法。

Medical image segmentation can provide a reliable basis for further clinical analysis and disease diagnosis. The performance of medical image segmentation has been significantly advanced with the convolutional neural networks (CNNs). However, most existing CNNs-based methods often produce unsatisfactory segmentation mask without accurate object boundaries. This is caused by the limited context information and inadequate discriminative feature maps after consecutive pooling and convolution operations. In that the medical image is characterized by the high intra-class variation, inter-class indistinction and noise, extracting powerful context and aggregating discriminative features for fine-grained segmentation are still challenging today. In this paper, we formulate a boundary-aware context neural network (BA-Net) for 2D medical image segmentation to capture richer context and preserve fine spatial information. BA-Net adopts encoder-decoder architecture. In each stage of encoder network, pyramid edge extraction module is proposed for obtaining edge information with multiple granularities firstly. Then we design a mini multi-task learning module for jointly learning to segment object masks and detect lesion boundaries. In particular, a new interactive attention is proposed to bridge two tasks for achieving information complementarity between different tasks, which effectively leverages the boundary information for offering a strong cue to better segmentation prediction. At last, a cross feature fusion module aims to selectively aggregate multi-level features from the whole encoder network. By cascaded three modules, richer context and fine-grain features of each stage are encoded. Extensive experiments on five datasets show that the proposed BA-Net outperforms state-of-the-art approaches.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源