论文标题

一般贝塞尔操作员的原子耐寒空间

The atomic Hardy space for a general Bessel operator

论文作者

Kania-Strojec, Edyta

论文摘要

我们研究与一般多维贝塞尔操作员$ \ mathbb {b}_ν$相关的强壮空间。该操作员取决于$ν$的多参数,通常仅限于半线的产物。在这里,我们在一般上下文中与贝塞尔运营商打交道,没有对类型参数的限制。我们根据运算符的最大运算符$ \ exp(-t \ thbbb {b}_ν)$来定义$ \ mathbb {b}_ν$的hardy space $ h^1 $。然后,我们证明,总的来说,$ h^1 $允许当地类型的原子分解。

We study Hardy spaces associated with a general multidimensional Bessel operator $\mathbb{B}_ν$. This operator depends on a multiparameter of type $ν$ that is usually restricted to a product of half-lines. Here we deal with the Bessel operator in the general context, with no restrictions on the type parameter. We define the Hardy space $H^1$ for $\mathbb{B}_ν$ in terms of the maximal operator of the semigroup of operators $\exp(-t\mathbb{B}_ν)$. Then we prove that, in general, $H^1$ admits an atomic decomposition of local type.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源